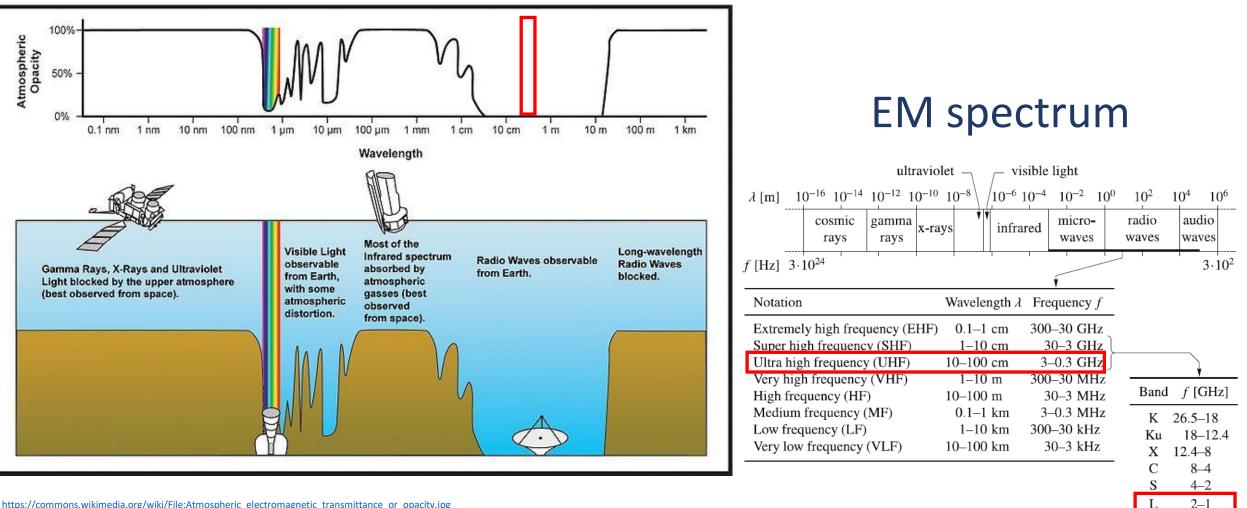


Danijel Šugar, Petar Jelić

GNSS RTK single-base measurements under higher ionospheric activity: results, analysis and mitigation technology

Konference GNSS 2025

Brno, 4th February 2025


Outline:

- Atmospheric electromagnetic permeability
- Ionosphere and TEC
- Solar Cycle 25
- RTK single-base measurements (15-11-2024)
- Results
- Mitigation measures
- Conclusions

Atmospheric electromagnetic permeability

https://commons.wikimedia.org/wiki/File:Atmospheric electromagnetic transmittance or opacity.jpg

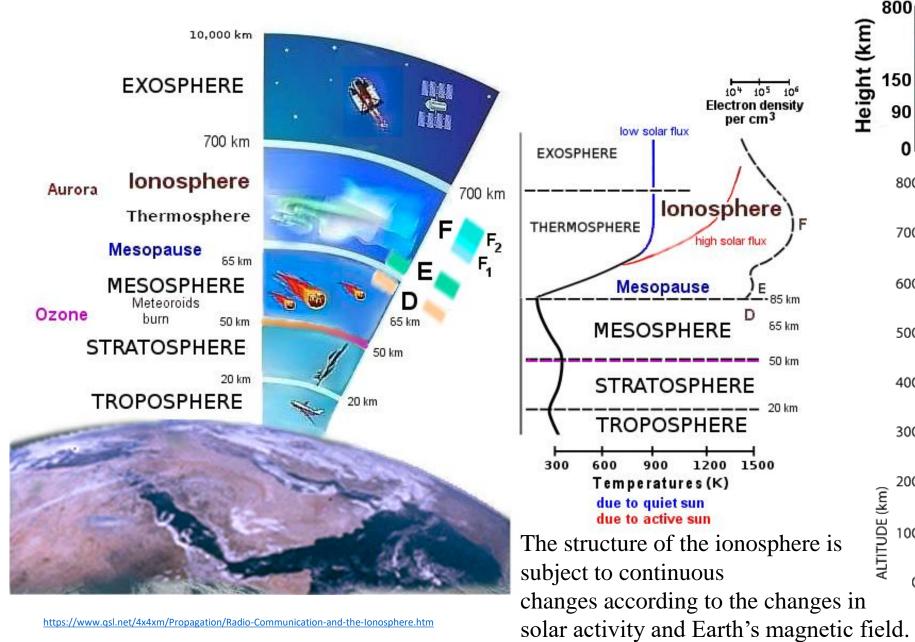
L (2-1 GHz) $\rightarrow \lambda = 15 - 30$ cm

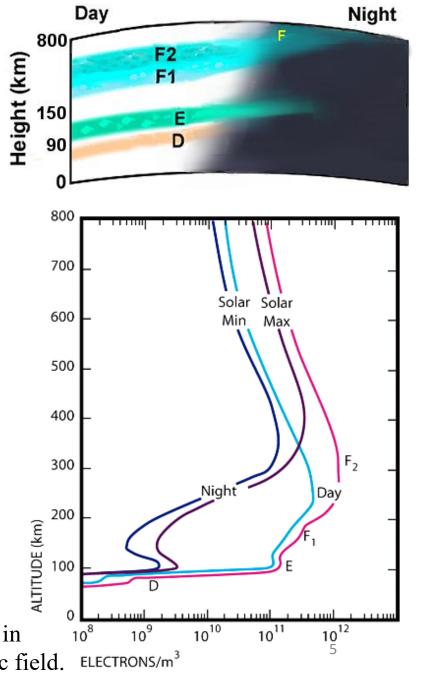
GNSS – Global Navigation Satellite System

GNSS constellations


Parameter	GPS	GLONASS	Galileo	BeiDou III
Orbital Period (MEO)	11hrs 58min	11hrs 15mins	14hrs 04mins	12hrs 37min
Orbital Height (MEO)	22,200 Km	19,100 Km	23,222 Km	21,528 Km
Inclination (MEO)	55°	64,8°	56°	55°
Number of Orbital Planes (MEO)	6	3	3	3
Number of satellites	24 MEOs + 6 spares	24 MEOs + 2 spares	24 MEOs + 6 spares	24 MEOs + 3 GEOs + 3 IGSOs + spares
Reference frame	WGS-84	PZ-90	GTFR	CGCS 2000
Reference time	GPS Time (GPST)	GLONASS Time (GLONASST)	Galileo System Time (GST)	BeiDou Time (BDT)

RNSS constellations (regional coverage)


Parameter	NAVIC	QZSS		
Coverage	India and a region extending 1,500 km (930 mi) around it	Asia-Oceania region		
Number of satellites	5 IGSOs + 3 GEOs	3 IGSOs + 1 GEO		
Reference frame	WGS-84	JGS		
Reference time	IRNSS Network Time (IRNWT)	QZSS Time (QZSST)		


European GNSS Agency (2020): GNSS User Technology Report, Issue 3, DOI:10.2878/565013

GNSS frequency bands

lonosphere (50 – 1000 km)

TEC – Total Electron Content

TEC = $\int N_e \, ds_0$ along the straight signal path between the satellite and the receiver

 Δ^{Iono} = measured – geometric range

GNSS error sources

$$\Delta_{\rm ph}^{\rm Iono} = -\frac{40.3}{f^2} \,\rm TEC$$

$$\Delta_{\rm gr}^{\rm Iono} = \frac{40.3}{f^2} \,\rm TEC$$

Contributing source	Error range
Satellite clocks	±2 m (6.6 feet)
Orbit errors	±2.5 m (8.2 feet)
lonospheric delays	±5 m (16.4 feet)
Tropospheric delays	±0.5 m (1.6 feet)
Receiver noise	±0.3 m (1 foot)
Multipath	±1 m (3.3 feet)

TEC – Total Electron Content

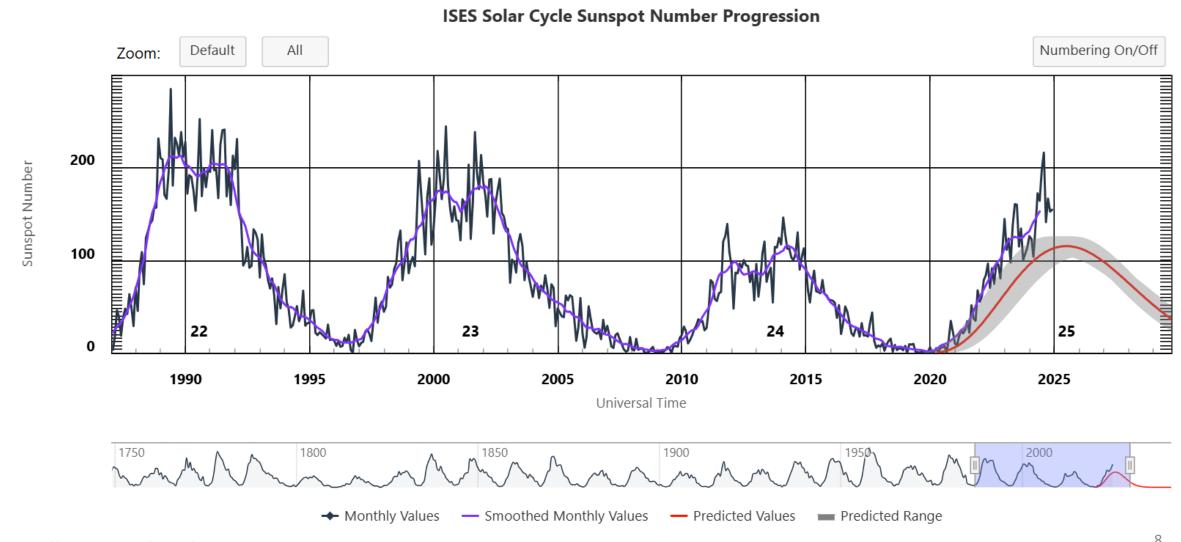
TEC can be:

- measured
- estinated (modeled)
- eliminated (iono-free combination):

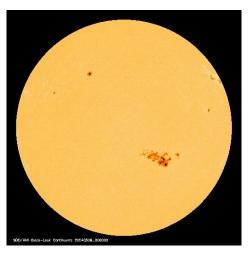
$$\Phi_{{
m iono-free}}=rac{f_{1}^{2}\;\Phi_{_{L_{1}}}-f_{2}^{2}\;\Phi_{_{L_{2}}}}{f_{1}^{2}-f_{2}^{2}}$$

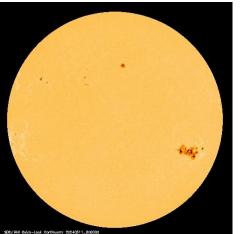
$$R_{ ext{iono-free}} = rac{f_1^2 \; R_{_{P_1}} - f_2^2 \; R_{_{P_2}}}{f_1^2 - f_2^2}$$

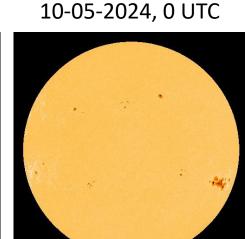
first order ionospheric effects (99.9%) can be eliminated


TEC depends on solar activity and Earth's magnetic field:

- sunspot activities (approx. 11year cycle),
- seasonal and diurnal variations,
- line of sight (elevation and azimuth of the satellite),
- position of the observing site

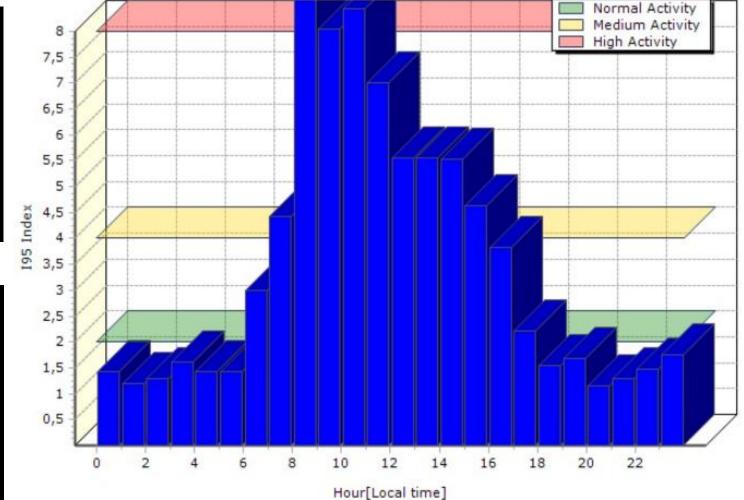

Solar Cycle 25


SOLAR CYCLE PROGRESSION



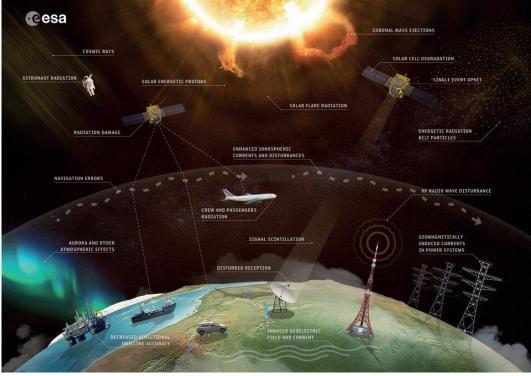
Solar Cycle 25

09-05-2024, 0 UTC



Polo ·

11-05-2024, 0 UTC 12

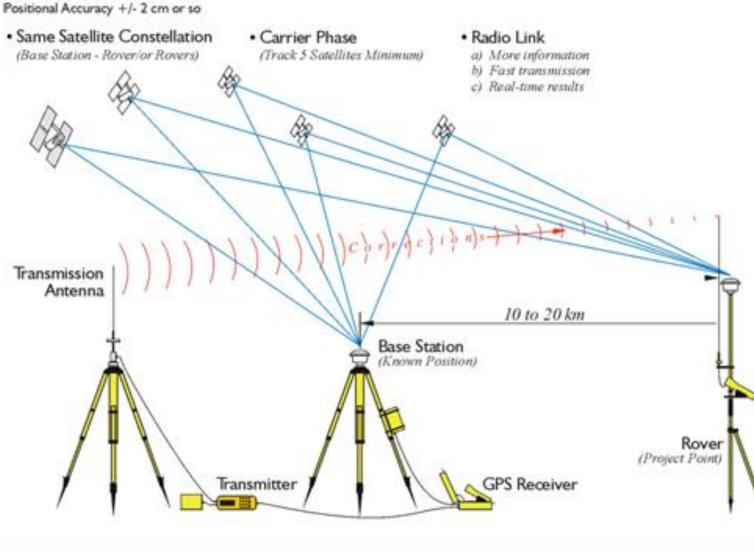

I95 is based on the differential ionospheric residuals as computed in a network of GNSS reference stations (CROPOS).

Solar Cycle 25

- increased number of sunsposts
- Coronal Mass Ejection (CMS)
- Solar Flare Radiation
- Solar Wind etc.

Effects on GNSS:

• spatial and temporal variation of the TEC



https://www.esa.int/Science_Exploration/Space_Science/The_solar_cycle_a_heartbeat_of_stellar_energy

- possible poor signal tracking and in some cases complete loss of lock on the GNSS satellite
- scintillation (rapid fluctuations in GNSS signal amplitude and phase as well as signal fading) leading to poor tracking, complete loss of lock, and/or carrier phase cycle slips
- increased measurement and position noise
- RTK initialization degradation

Real-Time Kinematic (RTK)

Real-Time-Kinematic

- Due to the spatial decorrelation of errors (iono, tropo, orbit), the RTK method is limited to the range of 10 to 20 km
- The spatial decorrelation of the ionospheric delay is especially pronounced under high ionospheric activity hindering or disabling the fixed ambiguity resolution

lonoGuard

- lauched in October 2023
- mitigation of ionospheric disruptions in RTK positioning with Trimble ProPoint enabled receivers
- the algorithm addresses the issue on two levels: in signal tracking and in RTK algorithms (it is directly implemented in the ProPoint RTK engine)
- optimum performance in RTK: lonoGuard technology is enabled on the base and rover receivers
- ionospheric information for each satellite is transmitted via proprietary CMRx or RTCM MSM protocol

Trimble IonoGuard

Protecting RTK GNSS from ionospheric disturbances

https://geospatial.trimble.com/en/resources/i/1523829-trimble-ionoguard-rtk-gnsstechpub/0?

RTK single-base measurents

- Base receiver: Trimble Alloy
- Rover receivers: Trimble R12i, R780, R980
- ProPoint engine + IonoGuard
- Baselines: approx. 8 km, 16 km, 24 km
- Survey style: RTK & Logging (T04);
- Measurement method: Continuou Topo (1 sec)
- Mobile Internet; CMRx
- WUI (Web User Interface)

÷	\rightarrow	C	▲ Not secure	192.168.0.66:5080
_			<u>_</u>	General
Rec	eive	Stat		
Sat	ellite	s		External Frequency Disable V [No Source Detected, Using Internal]
Dat	a Log	gging		1PPS On/Off Disable V
Rec	eive	Con	figuration	Event 1 On/Off Disable V Slope Positive V
	umma	No. And all the second		
	ntenn			IonoGuard TM Enable ~
Re	eferer	ice St	ation	

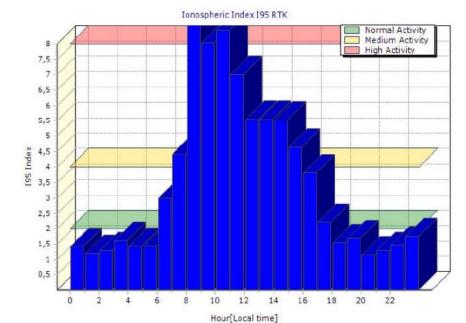
24 km

16 km

8 km

0 km

13

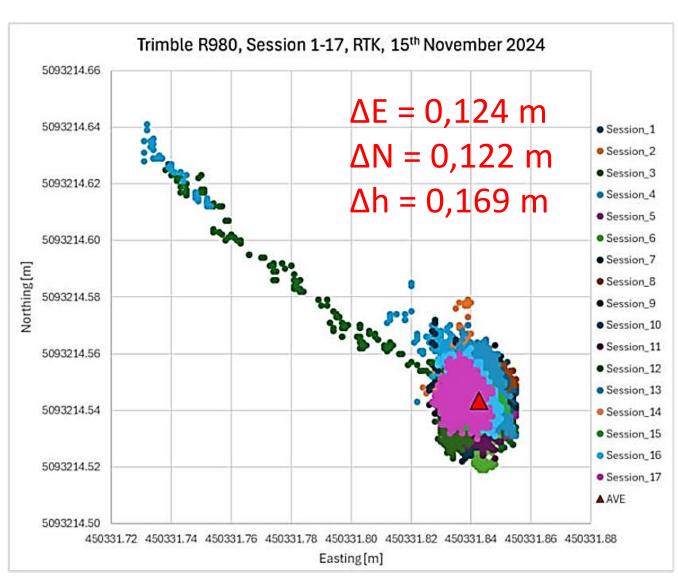

Observation plan: 15-11-2024

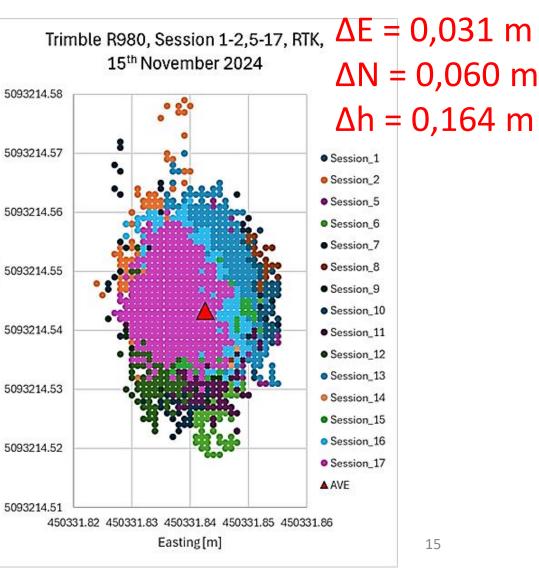
	Planned (GPST)]			Realized (GPST)			RANGE [m]]
Session	Start	Stop	BASE	ROVER	Duration	Start	Stop	Duration	ΔE	ΔΝ	Δh
1	07:00	07:30	NO	NO	00:30	07:08	07:32	00:24	0.019	0.031	0.043
2	07:35	08:05	IONO	IONO	00:30	07:34	08:05	00:30	0.026	0.048	0.061
3	08:10	08:25	IONO	NO	00:15	08:08	08:25	00:16	0.117	0.101	0.114
4	08:25	08:40	NO	IONO	00:15	08:28	08:40	00:11	0.115	0.108	0.151
5	08:45	09:15	IONO	IONO	00:30	08:45	09:15	00:30	0.021	0.033	0.069
6	09:20	09:50	NO	NO	00:30	09:18	09:50	00:31	0.015	0.032	0.048
7	09:55	10:25	IONO	IONO	00:30	09:54	10:25	00:30	0.029	0.050	0.164
8	10:30	11:00	NO	NO	00:30	10:27	11:00	00:32	0.023	0.026	0.054
9	11:05	11:35	IONO	IONO	00:30	11:02	11:35	00:32	0.024	0.027	0.061
10	11:40	12:10	NO	NO	00:30	11:37	12:10	00:33	0.015	0.023	0.046
11	12:15	12:45	IONO	IONO	00:30	12:12	12:45	00:33	0.023	0.031	0.056
12	12:50	13:20	NO	NO	00:30	12:46	13:20	00:33	0.020	0.033	0.063
13	13:25	13:55	IONO	IONO	00:30	13:24	13:55	00:31	0.022	0.039	0.075
14	14:00	14:15	IONO	NO	00:15	13:58	14:15	00:16	0.012	0.019	0.035
15	14:15	14:30	NO	IONO	00:15	14:18	14:31	00:12	0.015	0.020	0.058
16	14:35	15:05	IONO	IONO	00:30	14:34	15:05	00:30	0.021	0.031	0.078
17	15:10	15:40	NO	NO	00:30	15:07	15:40	00:33	0.020	0.030	0.048
NO = IonoGuard DISABLED						MIN:	0.012	0.019	0.035		

IONO

= IonoGuard ENABLED

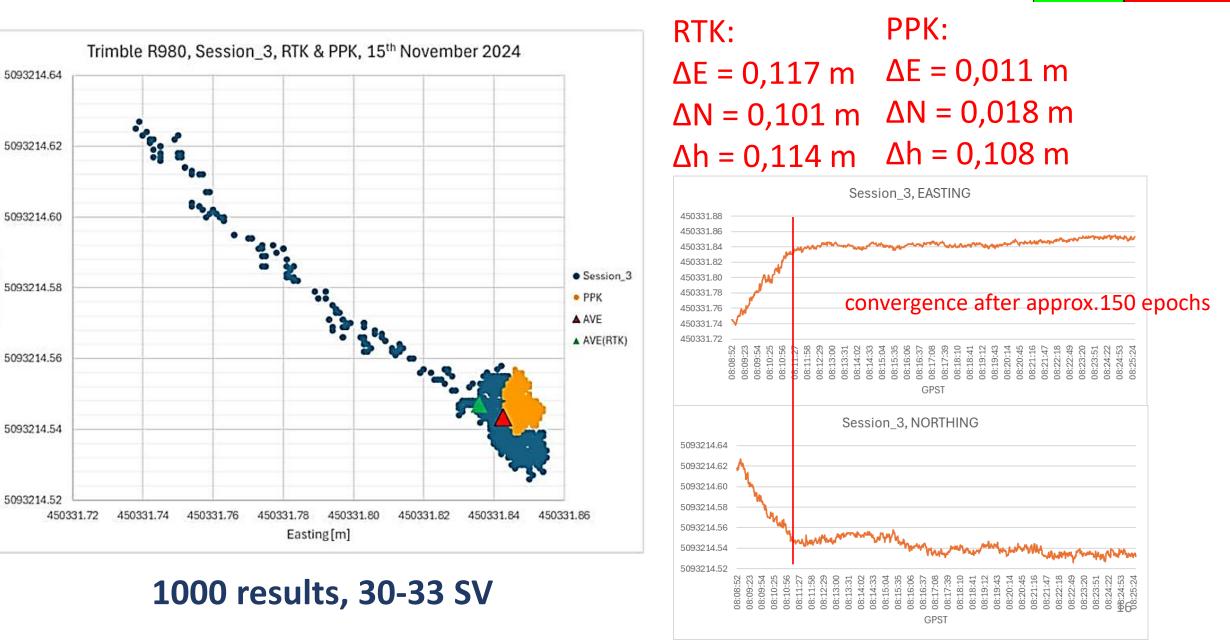
MIN:	0.012	0.019	0.035
MAX:	0.029	0.050	0.164




Results (E, N)

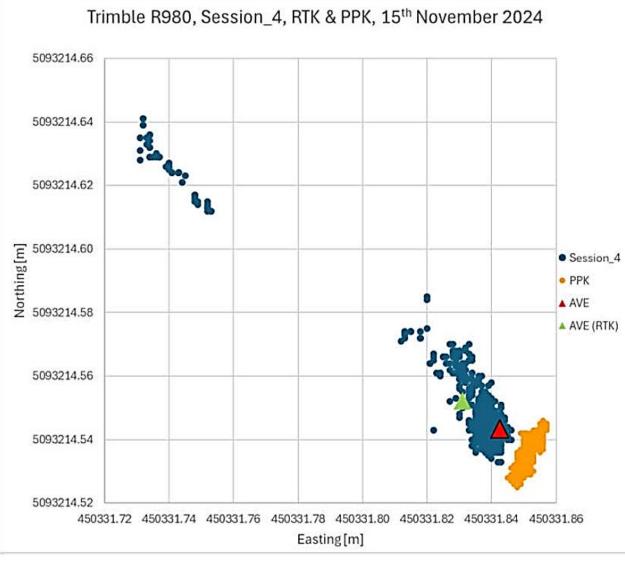
• 27975 results, 17 sessions

• 26274 results, 15 sessions


Northing [m]

Results: Session_3, I95 High activity (> 8)

Northing [m]

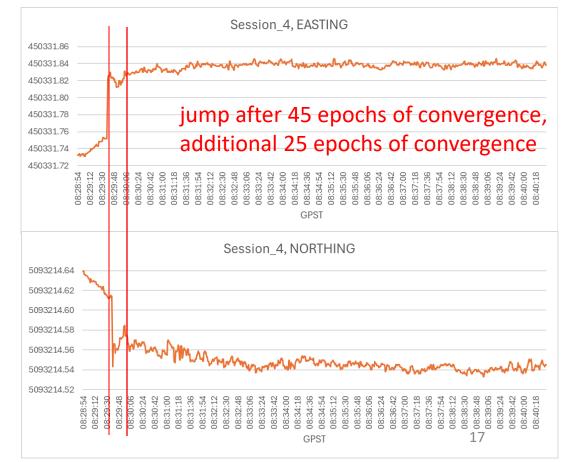


BASE ROVER

IONO

NO

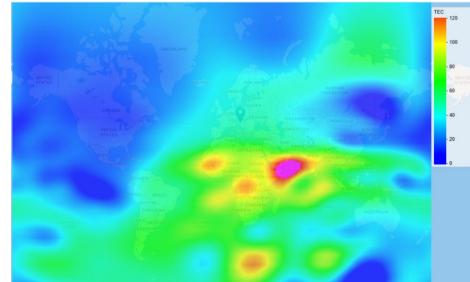
Results: Session_4, I95 High activity (> 8)


RTK:PPK: $\Delta E = 0,115 \text{ m}$ $\Delta E = 0,013 \text{ m}$ $\Delta N = 0,108 \text{ m}$ $\Delta N = 0,022 \text{ m}$ $\Delta h = 0,151 \text{ m}$ $\Delta h = 0,080 \text{ m}$

BASE

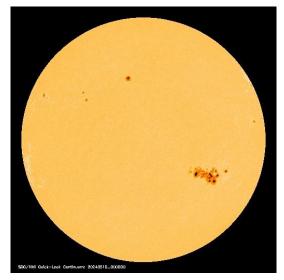
NO

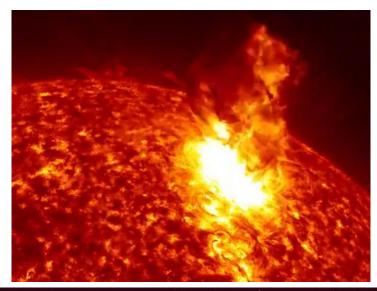
ROVER


IONO

Mitigation measures

- installation of the latest firmware on the GNSS receiver to ensure best tracking and positioning performance
- use observations of multiple GNSS constellations (increased number of observations)
- use multi-frequency GNSS observations
- ensure the cut-off angle $\geq 10^{\circ}$
- when possible apply multiple occupations at different times under different ionospheric conditions
- check the current ionospheric impact in your region and monitor the ionospheric activity using appropriate web portals





Conclusions:

- Ionosphere is the largest individual source of error for GNSS
- RTK method due to the spatial decorrelation of errors (iono, tropo, orbit) is specially vulnerable to ionospheric disruptions
- Ionospheric activity is pronounced under the Solar maximum
- Algorithms and technologies are being developed to mitigate the impact of ionosphere on GNSS measurements
- RTK SB positioning results at 24 km long baseline under higher iono activity have been presented
- Mitigation measures to ensure positioning performance: multiconstellation, multi-frequency, firmware update etc.
- GNSS planning taking into consideration space weather conditions (TEC, scintillation, iono indices etc.)

Děkujeme za pozornost!