

WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

Real-Time fusion of sensors for navigation

<u>Adrian Kaczmarek¹</u>, Witold Rohm¹, Lasse Klingbeil², Janusz Tchórzewski³

¹Institute of Geodesy and Geoinformatics, Wroclaw University of Environmental and Life Sciences, Wrocław, 50375, Poland ²Institute of Geodesy and Geoinformation, University of Bonn, Bonn, 53115, Germany ³StatumGPS sp. z o.o., Global Credit Development Fund Poland sp. z o.o., Wrocław, 50072, Poland

DRUŽICOVÉ METODY v teorii a praxi Brno, 01.02.2024

Outline

- 1. Introduction and motivation
- 2. Low-cost test platform (test trolley)
- 3. Integration extended Kalman Filter model
- 4. EKF filter input and reference data
- 5. Results
- 6. Conclusion

Introduction and motivation (1)

Autonomous lawnmower **with** border cable

Autonomous lawnmower **without** border cable

http://grauonline.de/cms2/?page_id=153

Introduction and motivation (2) IMU GNSS

~250\$

Hi-end Mobile

Mapping System

~50000\$ - ...

Low-cost test platform (test trolley) – v.1

The first EKF results using test platform version 1

Sensors fusion and test data

30

0.033

WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

0.052

0.033

0.053

Combination of different sensors' parameters

ACCELEROMETER ONLY

KALMAN FILTER TO FUSE ACCELEROMETER AND GYROSCOPE

2019/20 - Kuhlmann/Klingbeil: Sensors and State Estimation - Geodesy - 06 - Kalman Filter II

WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

Integration EKF model (main equations) (1)

ogyro

 $x_k^- = f(x_{k-1}, u_k, w_k)$ $P_k^{\bar{r}} = \Phi P_{k-1} \Phi^T + G Q G^T$

$$x_{k}^{-} = \begin{bmatrix} x_{k} \\ y_{k} \\ \varphi_{k} \end{bmatrix} = \begin{bmatrix} x_{k-1} + \cos(\varphi_{k-1}) \cdot (\Delta odo_{k} + w_{odo}) \\ y_{k-1} + \sin(\varphi_{k-1}) \cdot (\Delta odo_{k} + w_{odo}) \\ \varphi_{k-1} + (\omega_{gyro,k} + w_{gyro}) \cdot \Delta t \end{bmatrix}$$

$$\Phi_{k-1} = \frac{\partial f(x, u, w)}{\partial x} = \begin{bmatrix} 1 & 0 & -\sin(\varphi_{k-1}) \cdot \Delta o do_k \\ 0 & 1 & \cos(\varphi_{k-1}) \cdot \Delta o do_k \\ 1 & 0 & 1 \end{bmatrix}_{x=x_{k-1}, u=u_{k-1}}$$
$$Q = \begin{bmatrix} \sigma_{odo}^2 & 0 \\ 0 & \sigma_{avro}^2 \end{bmatrix}; \ G = \frac{\partial f(x, u, w)}{\partial w} = \begin{bmatrix} \cos(\varphi_{k-1}) & 0 \\ \sin(\varphi_{k-1}) & 0 \\ \sin(\varphi_{k-1}) & 0 \end{bmatrix}$$

0

State vector Transition matrix

System

noise

 $\Delta t \rfloor_{x=x_{k-1}, u=u_{k-1}}$ WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

Prediction

Integration EKF model (main equations) (2)

noise

Update

Test area - terrace of one of the building UPWr (Wrocław, Poland)

Results (1) – Applanix Mobile Mapping System

Direction	Applanix position accuracy [RMS]
North	0.014 m (referenced to the tachimetry)
East	0.013 m (referenced to the tachimetry)
Heading	0.1 degree (value after post-processing in POSPac software)

Results (2) – GNSS+IMU+odometry – variant 0

Results (3) – GNSS+IMU+odometry – variant 1

Results (4) – GNSS+IMU+odometry – variant 2

Results (5) – GNSS+IMU+odometry – variant 3

Results (6) – GNSS+IMU+odometry sensors fusion (final result)

Results (7) – GNSS heading and IMU sensors fusion

Results (8) – GNSS heading and IMU sensors fusion (final result)

WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

Conclusions

- After integration, we obtained almost two times better results for position and orientation than without integration.
- It should be noted that the precise time synchronization between the sensors is very important.

Further work will be focused on improving hardware:

- synchronization sensors using a signal from 1PPS pin from ublox module or using synchronization option built in xsens module,
- adding to the filter another dimension (2D -> 3D).

UNIWERSYTET Przyrodniczy we Wrocławiu

Thank you for your attention!

adrian.kaczmarek@upwr.edu.pl

Funding: The research is co-financed under the Leading Reasarch Groups support project from the subsidy increased for the period 2020–2025 in the amount of 2% of the subsidy referred to Art. 387 (3) of the Law of 20 July 2018 on Higher Education and Science, obtained in 2019, and a project "Testing and optimizing the platform performance for precise positioning" grant no. Z030/0025/20 (B090/0052/19).