Real-Time fusion of sensors for navigation

Adrian Kaczmarek1, Witold Rohm1, Lasse Klingbeil2, Janusz Tchórzewski3

1Institute of Geodesy and Geoinformatics, Wroclaw University of Environmental and Life Sciences, Wroclaw, 50375, Poland
2Institute of Geodesy and Geoinformation, University of Bonn, Bonn, 53115, Germany
3StatumGPS sp. z o.o., Global Credit Development Fund Poland sp. z o.o., Wroclaw, 50072, Poland
Outline

1. Introduction and motivation
2. Low-cost test platform (test trolley)
3. Integration extended Kalman Filter model
4. EKF filter input and reference data
5. Results
6. Conclusion
Introduction and motivation (1)

Autonomous lawnmower **with** border cable

[Image: Autonomous lawnmower with border cable]

https://powerequipment.honda.com/

Autonomous lawnmower **without** border cable

[Image: Autonomous lawnmower without border cable]

http://grauonline.de/cms2/?page_id=153
Introduction and motivation (2)

IMU

~10$

~550$

~10$

GNSS

~250$

Hi-end Mobile Mapping System

~50000$ - …
Low-cost test platform (test trolley) – v.1
The first EKF results using test platform version 1

EKF - RMS:
N = 0.25 m
E = 0.28 m
Sensors fusion and test data

<table>
<thead>
<tr>
<th>Drift (°/h)</th>
<th>IMU – fiber optic (0.1°/h)</th>
<th>Xsens - MEMS (10°/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N - RMS [m]</td>
<td>E - RMS [m]</td>
</tr>
<tr>
<td>0</td>
<td>0.029</td>
<td>0.042</td>
</tr>
<tr>
<td>10</td>
<td>0.029</td>
<td>0.040</td>
</tr>
<tr>
<td>20</td>
<td>0.032</td>
<td>0.042</td>
</tr>
<tr>
<td>30</td>
<td>0.033</td>
<td>0.052</td>
</tr>
</tbody>
</table>
Low-cost test platform (test trolley) – v.2

- u-blox antennas (receivers ZED-F9P)
- IMU (xsens MTi-7)
- Geodetic prism
- Applanix mobile mapping system
- Raspberry Pi and others electronic low-cost equipment
- Odometers
- Reference track
- Low-cost track
Combination of different sensors’ parameters

ACCELEROMETER ONLY

GYROSCOPE ONLY (STRAPDOWN INTEGRATION)

KALMAN FILTER TO FUSE ACCELEROMETER AND GYROSCOPE
Integration EKF model (main equations) (1)

\[
x_k^- = \begin{bmatrix} x_k \\ y_k \\ \varphi_k \end{bmatrix} = \begin{bmatrix} x_{k-1} + \cos(\varphi_{k-1}) \cdot (\Delta odo_k + w_{odo}) \\ y_{k-1} + \sin(\varphi_{k-1}) \cdot (\Delta odo_k + w_{odo}) \\ \varphi_{k-1} + (\omega_{gyro,k} + w_{gyro}) \cdot \Delta t \end{bmatrix}
\]

\[
\Phi_{k-1} = \frac{\partial f(x, u, w)}{\partial x} = \begin{bmatrix} 1 & 0 & -\sin(\varphi_{k-1}) \cdot \Delta odo_k \\ 0 & 1 & \cos(\varphi_{k-1}) \cdot \Delta odo_k \\ 0 & 0 & 1 \end{bmatrix}
\]

\[
Q = \begin{bmatrix} \sigma_{odo}^2 & 0 \\ 0 & \sigma_{gyro}^2 \end{bmatrix}; \quad G = \frac{\partial f(x, u, w)}{\partial w} = \begin{bmatrix} \cos(\varphi_{k-1}) & 0 \\ \sin(\varphi_{k-1}) & 0 \\ 0 & \Delta t \end{bmatrix}
\]
Integration EKF model (main equations) (2)

\[
K_k = P_k^{-H^T(HP_k^{-}H^T + R)^{-1}} \\
x_k = x_k^- + K_k(z_k - h(x_k^-)) \\
P_k = (I - K_kH)P_k^-
\]
EKF filter input and reference data

Input data [50 Hz]
- GNSS u-blox: X [m], Y [m], \(\phi \) [°]
- IMU xsens: \(\omega \) (z-axis) [rad/s]
- Odometry: \(\Delta s \) [m]

Reference data
- Tachimetry [1 Hz]: X [m], Y [m]
- Applanix [200 Hz]: X [m], Y [m], \(\phi \) [°]

Test area - terrace of one of the building UPWr (Wrocław, Poland)
Results (1) – Applanix Mobile Mapping System

<table>
<thead>
<tr>
<th>Direction</th>
<th>Applanix position accuracy [RMS]</th>
</tr>
</thead>
<tbody>
<tr>
<td>North</td>
<td>0.014 m (referenced to the tachimetry)</td>
</tr>
<tr>
<td>East</td>
<td>0.013 m (referenced to the tachimetry)</td>
</tr>
<tr>
<td>Heading</td>
<td>0.1 degree (value after post-processing in POSPac software)</td>
</tr>
</tbody>
</table>
Results (2) – GNSS+IMU+odometry – variant 0

\[
Q = \begin{bmatrix}
\sigma_{odo}^2 & 0 \\
0 & \sigma_{gyro}^2
\end{bmatrix}
\]

\[
R = \begin{bmatrix}
\sigma_{GPS,X}^2 & 0 & 0 \\
0 & \sigma_{GPS,Y}^2 & 0 \\
0 & 0 & \sigma_{GPS,\varphi}^2
\end{bmatrix}
\]

\[\Delta t = 0.02s\]

<table>
<thead>
<tr>
<th>Position from:</th>
<th>Direction</th>
<th>Position accuracy [RMS]</th>
</tr>
</thead>
<tbody>
<tr>
<td>u-blox</td>
<td>North</td>
<td>0.052 m</td>
</tr>
<tr>
<td></td>
<td>East</td>
<td>0.089 m</td>
</tr>
<tr>
<td>sensors fusion (EKF)</td>
<td>North</td>
<td>0.039 m</td>
</tr>
<tr>
<td></td>
<td>East</td>
<td>0.022 m</td>
</tr>
</tbody>
</table>
Results (3) – GNSS+IMU+odometry – variant 1

Position from: Direction Position accuracy [RMS]

<table>
<thead>
<tr>
<th></th>
<th>North</th>
<th>East</th>
</tr>
</thead>
<tbody>
<tr>
<td>u-blox</td>
<td>0.052 m</td>
<td>0.089 m</td>
</tr>
<tr>
<td>sensors fusion (EKF)</td>
<td>0.031 m</td>
<td>0.053 m</td>
</tr>
</tbody>
</table>

\[
Q = \begin{bmatrix}
\sigma^2_{odo} & 0 \\
0 & \sigma^2_{gyro}
\end{bmatrix}
\]

\[
R = \begin{bmatrix}
\sigma^2_{GPS,X} & 0 & 0 \\
0 & \sigma^2_{GPS,Y} & 0 \\
0 & 0 & \sigma^2_{GPS,\phi}
\end{bmatrix}
\]

\[\Delta t = 0.02s\]
Results (4) – GNSS+IMU+odometry – variant 2

Position from: Direction Position accuracy [RMS]

u-blox North 0.052 m
 East 0.089 m

sensors fusion (EKF) North 0.037 m
 East 0.025 m

\[
Q = \begin{bmatrix}
\sigma_{odo}^2 & 0 \\
0 & \sigma_{gyro}^2
\end{bmatrix}
\]

\[
R = \begin{bmatrix}
\sigma_{GPS,X}^2 & 0 & 0 \\
0 & \sigma_{GPS,Y}^2 & 0 \\
0 & 0 & \sigma_{GPS,\phi}^2
\end{bmatrix}
\]

\[\Delta t = 0.02s + 75\mu s\]
Results (5) – GNSS+IMU+odometry – variant 3

\[Q = \begin{bmatrix} \sigma_{odo}^2 + 0.3 mm & 0 \\ 0 & \sigma_{gyro}^2 \end{bmatrix} \]

\[R = \begin{bmatrix} \sigma_{GPS,X}^2 & 0 & 0 \\ 0 & \sigma_{GPS,Y}^2 & 0 \\ 0 & 0 & \sigma_{GPS,\varphi}^2 \end{bmatrix} \]

\[\Delta t = 0.02 s + 75 \mu s \]

<table>
<thead>
<tr>
<th>Position from:</th>
<th>Direction</th>
<th>Position accuracy [RMS]</th>
</tr>
</thead>
<tbody>
<tr>
<td>u-blox</td>
<td>North</td>
<td>0.052 m</td>
</tr>
<tr>
<td></td>
<td>East</td>
<td>0.089 m</td>
</tr>
<tr>
<td>sensors fusion (EKF)</td>
<td>North</td>
<td>0.026 m</td>
</tr>
<tr>
<td></td>
<td>East</td>
<td>0.019 m</td>
</tr>
</tbody>
</table>
Results (6) – GNSS+IMU+odometry sensors fusion (final result)

uBlox - RMS:
N = 0.052 m
E = 0.089 m

EKF - RMS:
N = 0.039 m
E = 0.021 m

variant 0

EKF - RMS:
N = 0.026 m
E = 0.019 m

variant 3
Results (7) – GNSS heading and IMU sensors fusion

<table>
<thead>
<tr>
<th>Heading from:</th>
<th>Heading accuracy [RMS]</th>
</tr>
</thead>
<tbody>
<tr>
<td>two GNSS antennas (u-blox)</td>
<td>5.55 [°]</td>
</tr>
<tr>
<td>sensors fusion (EKF)</td>
<td>0.59 [°]</td>
</tr>
</tbody>
</table>
Results (8) – GNSS heading and IMU sensors fusion (final result)
Conclusions

• After integration, we obtained almost two times better results for position and orientation than without integration.
• It should be noted that the precise time synchronization between the sensors is very important.

Further work will be focused on improving hardware:
◦ synchronization sensors using a signal from 1PPS pin from ublox module or using synchronization option built in xsens module,
◦ adding to the filter another dimension (2D -> 3D).
Thank you for your attention!
adrian.kaczmarek@upwr.edu.pl

Funding: The research is co-financed under the Leading Reasarch Groups support project from the subsidy increased for the period 2020–2025 in the amount of 2% of the subsidy referred to Art. 387 (3) of the Law of 20 July 2018 on Higher Education and Science, obtained in 2019, and a project “Testing and optimizing the platform performance for precise positioning” grant no. 2030/0025/20 (B090/0052/19).